资源类型

期刊论文 1815

年份

2023 118

2022 135

2021 119

2020 109

2019 102

2018 115

2017 104

2016 89

2015 111

2014 71

2013 75

2012 52

2011 65

2010 72

2009 54

2008 54

2007 67

2006 57

2005 42

2004 35

展开 ︾

关键词

指标体系 12

系统工程 11

制造强国 8

可持续发展 7

开放的复杂巨系统 7

系统集成 7

钱学森 7

技术体系 6

制造业 5

发展战略 5

汽车强国 5

系统科学 5

仿真 4

创新 4

战略性新兴产业 4

智能制造 4

标准体系 4

电力系统 4

电动汽车 4

展开 ︾

检索范围:

排序: 展示方式:

Cyber–Physical Power System (CPPS): A review on measures and optimization methods of system resilience

《工程管理前沿(英文)》 2021年 第8卷 第4期   页码 503-518 doi: 10.1007/s42524-021-0163-3

摘要: The Cyber–Physical Power System (CPPS) is one of the most critical infrastructure systems in a country because a stable and secure power supply is a key foundation for national and social development. In recent years, resilience has become a major topic in preventing and mitigating the risks caused by large-scale blackouts of CPPSs. Accordingly, the concept and significance of CPPS resilience are at first explained from the engineering perspective in this study. Then, a review of representative quantitative assessment measures of CPPS resilience applied in the existing literature is provided. On the basis of these assessment measures, the optimization methods of CPPS resilience are reviewed from three perspectives, which are mainly focused on the current research, namely, optimizing the recovery sequence of components, identifying and protecting critical nodes, and enhancing the coupling patterns between physical and cyber networks. The recent advances in modeling methods for cascading failures within the CPPS, which is the theoretical foundation for the resilience assessment and optimization research of CPPSs, are also presented. Lastly, the challenges and future research directions for resilience optimizing of CPPSs are discussed.

关键词: Cyber–Physical Power System     resilience assessment     resilience optimization     cascading failure modeling    

Optimal operation of integrated energy system including power thermal and gas subsystems

《能源前沿(英文)》 2022年 第16卷 第1期   页码 105-120 doi: 10.1007/s11708-022-0814-z

摘要: As a form of hybrid multi-energy systems, the integrated energy system contains different forms of energy such as power, thermal, and gas which meet the load of various energy forms. Focusing mainly on model building and optimal operation of the integrated energy system, in this paper, the dist-flow method is applied to quickly calculate the power flow and the gas system model is built by the analogy of the power system model. In addition, the piecewise linearization method is applied to solve the quadratic Weymouth gas flow equation, and the alternating direction method of multipliers (ADMM) method is applied to narrow the optimal results of each subsystem at the coupling point. The entire system reaches its optimal operation through multiple iterations. The power-thermal-gas integrated energy system used in the case study includes an IEEE-33 bus power system, a Belgian 20 node natural gas system, and a six node thermal system. Simulation-based calculations and comparison of the results under different scenarios prove that the power-thermal-gas integrated energy system enhances the flexibility and stability of the system as well as reducing system operating costs to some extent.

关键词: integrated energy system     power-to-gas     dist-flow     piecewise linearization     alternating direction method of multipliers (ADMM)    

A comprehensive review of wind power based power system frequency regulation

《能源前沿(英文)》 2023年 第17卷 第5期   页码 611-634 doi: 10.1007/s11708-023-0876-6

摘要: Wind power (WP) is considered as one of the main renewable energy sources (RESs) for future low-carbon and high-cost-efficient power system. However, its low inertia characteristic may threaten the system frequency stability of the power system with a high penetration of WP generation. Thus, the capability of WP participating in the system frequency regulation has become a research hotspot. In this paper, the impact of WP on power system frequency stability is initially presented. In addition, various existing control strategies of WP participating in frequency regulation are reviewed from the wind turbine (WT) level to the wind farm (WF) level, and their performances are compared in terms of operating principles and practical applications. The pros and cons of each control strategy are also discussed. Moreover, the WP combing with energy storage system (ESS) for system frequency regulation is explored. Furthermore, the prospects, future challenges, and solutions of WP participating in power system frequency regulation are summarized.

关键词: frequency regulation strategies     wind turbine generators     grid-forming control     model predictive control     energy storage system    

Steam turbine governor modeling and parameters testing for power system simulation

Ying LI, Chufeng PENG, Zenghui YANG

《能源前沿(英文)》 2009年 第3卷 第2期   页码 198-203 doi: 10.1007/s11708-009-0004-2

摘要: The theoretical modeling, parameters test and model correction for a steam turbine (ST) governor are discussed. A set of ST Governor system model for power system simulation is created based on this research. A power system simulation for an actual power grid accident is conducted using this new model and the comparison between the simulation and actual data show that the results are satisfactory.

关键词: power system simulation     ST governor system     modeling     parameters testing    

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

《能源前沿(英文)》 2014年 第8卷 第2期   页码 261-268 doi: 10.1007/s11708-014-0298-6

摘要: This paper presents an adaptive neuro fuzzy interference system (ANFIS) based approach to tune the parameters of the static synchronous compensator (STATCOM) with frequent disturbances in load model and power input of a wind-diesel based isolated hybrid power system (IHPS). In literature, proportional integral (PI) based controller constants are optimized for voltage stability in hybrid systems due to the interaction of load disturbances and input power disturbances. These conventional controlling techniques use the integral square error (ISE) criterion with an open loop load model. An ANFIS tuned constants of a STATCOM controller for controlling the reactive power requirement to stabilize the voltage variation is proposed in the paper. Moreover, the interaction between the load and the isolated power system is developed in terms of closed loop load interaction with the system. Furthermore, a comparison of transient responses of IHPS is also presented when the system has only the STATCOM and the static compensation requirement of the induction generator is fulfilled by the fixed capacitor, dynamic compensation requirement, meanwhile, is fulfilled by STATCOM. The model is tested for a 1% step increase in reactive power load demand at = 0 s and then a sudden change of 3% from the 1% at = 0.01 s for a 1% step increase in power input at variable wind speed model.

关键词: isolated wind-diesel power system     adaptive neuro fuzzy interference system (ANFIS)     integral square error (ISE) criterion     load interaction    

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

《能源前沿(英文)》 2015年 第9卷 第1期   页码 7-21 doi: 10.1007/s11708-014-0338-2

摘要: Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.

关键词: two area power system     automatic generation control     wind power generating system (WPGS)     deregulated environment     fuzzy logic controller (FLC)    

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

《能源前沿(英文)》 2013年 第7卷 第2期   页码 245-254 doi: 10.1007/s11708-012-0218-6

摘要: This paper presents the analysis of load frequency control (LFC) of a deregulated two-area hydro-thermal power system using fuzzy logic controller, with doubly fed induction generators (DFIGs) integrated into both the control areas. The deregulation of power sector has led to the formation of new companies for generation, transmission and distribution of power. The conventional two-area power system is modified to study the effects of the bilateral contracts of companies on the system dynamics. Deregulation creates highly competitive and distributed control environment, and the LFC becomes even more challenging when wind generators are also integrated into the system. The overall inertia of the system reduces, as the wind unit does not provide inertia and isolates from the grid during disturbances. The DFIGs integrated provide inertial support to the system through modified inertial control scheme, and arrests the initial fall in frequency after disturbance. The inertial control responds to frequency deviations, which takes out the kinetic energy of the wind turbine for improving the frequency response of the system. To enhance the participation of the doubly fed induction generator (DFIG) in the frequency control, optimal values of the speed control parameters of the DFIG-based wind turbine have been obtained using integral square error (ISE) technique. The dynamics of the system have been obtained for a small load perturbation, and for contract violation using fuzzy controller.

关键词: frequency regulation     fuzzy controller     de-regulated power system     doubly fed induction generator (DFIG)     bilateral contract    

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

《能源前沿(英文)》 2021年 第15卷 第4期   页码 916-929 doi: 10.1007/s11708-021-0757-9

摘要: Space nuclear reactor power (SNRP) using a gas-cooled reactor (GCR) and a closed Brayton cycle (CBC) is the ideal choice for future high-power space missions. To investigate the safety characteristics and develop the control strategies for gas-cooled SNRP, transient models for GCR, energy conversion unit, pipes, heat exchangers, pump and heat pipe radiator are established and a system analysis code is developed in this paper. Then, analyses of several operation conditions are performed using this code. In full-power steady-state operation, the core hot spot of 1293 K occurs near the upper part of the core. If 0.4 $ reactivity is introduced into the core, the maximum temperature that the fuel can reach is 2059 K, which is 914 K lower than the fuel melting point. The system finally has the ability to achieve a new steady-state with a higher reactor power. When the GCR is shut down in an emergency, the residual heat of the reactor can be removed through the conduction of the core and radiation heat transfer. The results indicate that the designed GCR is inherently safe owing to its negative reactivity feedback and passive decay heat removal. This paper may provide valuable references for safety design and analysis of the gas-cooled SNRP coupled with CBC.

关键词: gas-cooled space nuclear reactor power     closed Brayton cycle     system startup and shutdown     positive reactivity insertion accident    

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 205-210 doi: 10.1007/s11708-009-0073-2

摘要: Owing to the stochastic characteristic of natural wind speed, the output fluctuation of wind farm has a negative impact on power grid when a large-scale wind farm is connected to a power grid. It is very difficult to overcome this impact only by wind farm itself. A novel power system called wind-gas turbine hybrid energy system was discussed, and the framework design of this hybrid energy system was presented in detail in this paper. The hybrid energy system combines wind farm with several small gas turbine power plants to form an integrated power station to provide a relatively firm output power. The small gas turbine power plant has such special advantages as fast start-up, shutdown, and quick load regulation to fit the requirement of the hybrid energy system. Therefore, the hybrid energy system uses the output from the small gas turbine power plants to compensate for the output fluctuation from the wind farm for the firm output from the whole power system. To put this hybrid energy system into practice, the framework must be designed first. The capacity of the wind farm is chosen according to the capacity and units of small gas turbine power plants, load requirement from power grid, and local wind energy resource distribution. Finally, a framework design case of hybrid energy system was suggested according to typical wind energy resource in Xinjiang Autonomous Region in China.

关键词: framework design     hybrid energy system     wind farm     gas turbine power plants    

A smooth co-ordination control for a hybrid autonomous power system (HAPS) with battery energy storage

C. K. ARAVIND,G. SARAVANA ILANGO,C. NAGAMANI

《能源前沿(英文)》 2015年 第9卷 第1期   页码 31-42 doi: 10.1007/s11708-015-0347-9

摘要: The standalone hybrid power system constitutes a synchronous generator driven by a diesel engine, renewable energy source (wind) apart from a battery energy storage system. A coherent control strategy to regulate the voltage and frequency of the standalone grid is proposed in this paper. The system is simulated using Matlab/Simulink for preliminary validation and further tested on a laboratory prototype which involves a TMS320LF2407A DSP controller to digitally implement the control strategy. The dynamic behavior of the system is perused through the direct connection of an induction machine. The control strategy is verified for step changes in load and variation in wind power.

关键词: standalone hybrid power system     battery energy storage system (BESS)     power conversion    

制造强国的主要指标

“制造强国的主要指标研究”课题组

《中国工程科学》 2015年 第17卷 第7期   页码 7-19

摘要:

“制造强国的主要指标研究”是中国工程院“制造强国战略研究”重大咨询项目中的一个课题,于2013年1月启动, 一年多来,课题组围绕指标体系构建、制造强国指数评价、战略路径等方面多次召开课题组会和专家研讨会。课题组在充分研究国内外指标体系、工业发达国家强国之路的基础上,详细分析了我国制造业现状,提出了制造强国的内涵和特征,构建了制造强国评价指标体系,并对国际上公认已是制造强国的典型国家进行了研究、也对我国制造强国的进程进行了预测。同时结合指标体系的构建和评价结果,提出推进制造强国的战略路径。

关键词: 制造强国     评价体系     战略路径    

Active-reactive power scheduling of integrated electricity-gas network with multi-microgrids

《能源前沿(英文)》 2023年 第17卷 第2期   页码 251-265 doi: 10.1007/s11708-022-0857-1

摘要: Advances in natural gas-fired technologies have deepened the coupling between electricity and gas networks, promoting the development of the integrated electricity-gas network (IEGN) and strengthening the interaction between the active-reactive power flow in the power distribution network (PDN) and the natural gas flow in the gas distribution network (GDN). This paper proposes a day-ahead active-reactive power scheduling model for the IEGN with multi-microgrids (MMGs) to minimize the total operating cost. Through the tight coupling relationship between the subsystems of the IEGN, the potentialities of the IEGN with MMGs toward multi-energy cooperative interaction is optimized. Important component models are elaborated in the PDN, GDN, and coupled MMGs. Besides, motivated by the non-negligible impact of the reactive power, optimal inverter dispatch (OID) is considered to optimize the active and reactive power capabilities of the inverters of distributed generators. Further, a second-order cone (SOC) relaxation technology is utilized to transform the proposed active-reactive power scheduling model into a convex optimization problem that the commercial solver can directly solve. A test system consisting of an IEEE-33 test system and a 7-node natural gas network is adopted to verify the effectiveness of the proposed scheduling method. The results show that the proposed scheduling method can effectively reduce the power losses of the PDN in the IEGN by 9.86%, increase the flexibility of the joint operation of the subsystems of the IEGN, reduce the total operation costs by $32.20, and effectively enhance the operation economy of the IEGN.

关键词: combined cooling     heating     and power (CCHP)     integrated energy systems (IES)     natural gas     power distribution system     gas distribution system    

Power system reconfiguration and loss minimization for a distribution systems using “Catfish PSO” algorithm

K Sathish KUMAR,S NAVEEN

《能源前沿(英文)》 2014年 第8卷 第4期   页码 434-442 doi: 10.1007/s11708-014-0313-y

摘要: One of the very important ways to save electrical energy in the distribution system is network reconfiguration for loss reduction. Distribution networks are built as interconnected mesh networks; however, they are arranged to be radial in operation. The distribution feeder reconfiguration is to find a radial operating structure that optimizes network performance while satisfying operating constraints. The change in network configuration is performed by opening sectionalizing (normally closed) and closing tie (normally opened) switches of the network. These switches are changed in such a way that the radial structure of networks is maintained, all of the loads are energized, power loss is reduced, power quality is enhanced, and system security is increased. Distribution feeder reconfiguration is a complex nonlinear combinatorial problem since the status of the switches is non-differentiable. This paper proposes a new evolutionary algorithm (EA) for solving the distribution feeder reconfiguration (DFR) problem for a 33-bus and a 16-bus sample network, which effectively ensures the loss minimization.

关键词: distribution system reconfiguration (DFR)     power loss reduction     catfish particle swarm optimization (catfish PSO)     radial structure    

Optimization of cold-end system of thermal power plants based on entropy generation minimization

《能源前沿(英文)》 2022年 第16卷 第6期   页码 956-972 doi: 10.1007/s11708-021-0785-5

摘要: Cold-end systems are heat sinks of thermal power cycles, which have an essential effect on the overall performance of thermal power plants. To enhance the efficiency of thermal power plants, multi-pressure condensers have been applied in some large-capacity thermal power plants. However, little attention has been paid to the optimization of the cold-end system with multi-pressure condensers which have multiple parameters to be identified. Therefore, the design optimization methods of cold-end systems with single- and multi-pressure condensers are developed based on the entropy generation rate, and the genetic algorithm (GA) is used to optimize multiple parameters. Multiple parameters, including heat transfer area of multi-pressure condensers, steam distribution in condensers, and cooling water mass flow rate, are optimized while considering detailed entropy generation rate of the cold-end systems. The results show that the entropy generation rate of the multi-pressure cold-end system is less than that of the single-pressure cold-end system when the total condenser area is constant. Moreover, the economic performance can be improved with the adoption of the multi-pressure cold-end system. When compared with the single-pressure cold-end system, the excess revenues gained by using dual- and quadruple-pressure cold-end systems are 575 and 580 k$/a, respectively.

关键词: cold-end system     entropy generation minimization     optimization     economic analysis     genetic algorithm (GA)    

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

《能源前沿(英文)》 2020年 第14卷 第4期   页码 850-866 doi: 10.1007/s11708-020-0664-5

摘要: Concentrating solar power (CSP) is considered as a comparatively economical, more efficient, and large capacity type of renewable energy technology. However, CSP generation is found restricted only to high solar radiation belt and installed where high direct normal irradiance is available. This paper examines the viability of the adoption of the CSP system in a low sun belt region with a lower direct normal irradiance (DNI). Various critical analyses and plant economics have been evaluated with a lesser DNI state. The obtained results out of the designed system, subjected to low DNI are not found below par, but comparable to some extent with the performance results of such CSP plants at a higher DNI. The analysis indicates that incorporation of the thermal energy storage reduces the levelized cost of energy (LCOE) and augments the plant capacity factor. The capacity factor, the plant efficiency, and the LCOE are found to be 32.50%, 17.56%, and 0.1952 $/kWh, respectively.

关键词: concentrated solar power     direct normal irradiance     plant performance     plant economics     thermal energy storage    

标题 作者 时间 类型 操作

Cyber–Physical Power System (CPPS): A review on measures and optimization methods of system resilience

期刊论文

Optimal operation of integrated energy system including power thermal and gas subsystems

期刊论文

A comprehensive review of wind power based power system frequency regulation

期刊论文

Steam turbine governor modeling and parameters testing for power system simulation

Ying LI, Chufeng PENG, Zenghui YANG

期刊论文

Reactive power compensation of an isolated hybrid power system with load interaction using ANFIS tuned

Nitin SAXENA,Ashwani KUMAR

期刊论文

Impact of wind power generating system integration on frequency stabilization in multi-area power system

Y. K. BHATESHVAR,H. D. MATHUR,H. SIGUERDIDJANE

期刊论文

Load frequency control in deregulated power system with wind integrated system using fuzzy controller

Yajvender Pal VERMA, Ashwani KUMAR

期刊论文

Dynamic simulation of a space gas-cooled reactor power system with a closed Brayton cycle

期刊论文

Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants

Nengsheng BAO, Weidou NI,

期刊论文

A smooth co-ordination control for a hybrid autonomous power system (HAPS) with battery energy storage

C. K. ARAVIND,G. SARAVANA ILANGO,C. NAGAMANI

期刊论文

制造强国的主要指标

“制造强国的主要指标研究”课题组

期刊论文

Active-reactive power scheduling of integrated electricity-gas network with multi-microgrids

期刊论文

Power system reconfiguration and loss minimization for a distribution systems using “Catfish PSO” algorithm

K Sathish KUMAR,S NAVEEN

期刊论文

Optimization of cold-end system of thermal power plants based on entropy generation minimization

期刊论文

Viability of a concentrated solar power system in a low sun belt prefecture

Rahul BHATTACHARJEE, Subhadeep BHATTACHARJEE

期刊论文